Stone buildings in Salento (Puglia, Italy): Materials and techniques

F. Leccisi

Apulia and in particular Salento area underwent a deep transformation which changed the native look and gave rise to a balanced relation between the landscape and the habitat. Nowadays this balance is in crisis because of split up factors, brought about by the new economic forces, which begot deep changes in agricultural structure of the South of Italy and led up to the breakdown of the middle farm, cornerstone of the traditional agriculture. The subdivision of the agricultural lands has engendered their abandonment or their conversion into lots. The trullo, house with conical roof, typical apulia construction, becomes a villa for the week-ends, loosing, then, its environmental feature and, as a consequence, the countryside is no more an economic resource to those who work in it, but a «landscape» to be admired. Ancient centres, often forsaken because of the bad sanitary conditions, became object of consumption to be painted and illuminated in order to draw visitors’ attention and to sell, at a higher price, the trulli, the farms and the houses placed in that area.

The farms

In Apulia the farms, both for the territory conformation and for the consequences of the economic development, have a particular feature and represent the most rational and modern form of working organization and of conveyance surrender assignment of middle and big landed property. The farms consist of an agglomerate of cottages and of facilities necessary to give hospitality to a certain number of families, of head ovine cattle and to give the opportunity of manufacturing the milk to obtain its by-products. Another important characteristic of the farms is their inclination to the self-sufficiency, because they get by the land the necessary foodstuffs for a year and even provisions for the sowing. The origins of these agglomerates are very old: the great number of ruins, dated back to the Roman times, certify it. The farms, born as independent communities, as a consequence of the destruction of the cities and the towns, were given to gallant warriors or courtiers; then they were given to the feudatories, who used them as summer houses. The building complex consists of a central section on the first floor, where there are spacious rooms with a hall, intended for the owner. The cheese storehouses, and the warehouses for corn, oil and wine were annexed to the building (Calderazzi 1989). Along the sides of the courtyard, there are the staff lodgings, modest little houses often made up of just one room. The cattle has its place in the courtyards and in the stalls. The little church, the mill, the crusher and the facilities make the settlement self-sufficient. Some farms were built with a defensive shape; the farms placed in Otranto, on the Adriatic Sea, from where the Saracens’ incursions came, are an example (Mongiello 1984). The peasants, converging on the
farms, felt themselves guaranteed for protection and survival; therefore they started to build their houses next to the farms, turning these agglomerates into hamlets, villages and towns. There are many examples of these developing processes in Salento. Until the fifties, we have had three kinds of farms: the farm consisting of olive groves; the farm consisting of bare lands (prevalently used for grazing) and the farm consisting of olive groves and bare lands. Subsequently, and above all during the last twenty years, the land outline has been divided into four kinds: sheep farm, graniferous farm, olive farm and farm consisting of a complex structure. The farm Carestia (Famine) in Ostuni is the most representative farm with a complex structure. Notwithstanding its unsatisfactory name, it is a farm that gives rise to an agricultural and breeding centre (Mongiello 1996). The architeconical shapes of the construction are sumptuous and dated back to the beginning of the eighteenth century. It was built according to the archdeacon Massari’s will, who was of Lombardic origin. The farm Carestia has come back to life thanks to the present owner’s dynamism after a period of neglect. Nowadays, very busy agricultural and zootechnical activities take place in this farm.

It is to point out the plan of the fortified farms which have generally the shape of towers with a square or rectangular base, and are surrounded by stone pits and slits, having, at their base, a moat and a drawbridge. These fortified farms are representative of a moment of growth of a further step compared with the ancient hamlets, and testify some aspects of the Byzantine organization. The typical plan consists of the tower-shaped structures. The residence of the farmer is at the upper floors, while, at the ground floor, there are rooms to protect against the cattle, domestic habitations for farmhands and tenant farmers, and rooms and premises used as folds (Costantini and Novembre 1984).

The houses with corridor

The shape of town habitation is different. It has, almost always, a double room form: the fireplace is placed on the end wall and the rooms are built depthward, shaping the plan of the so-called house with corridor, *curreddura*. This kind of house consists of three rooms: the front and spacious one, known as *camera de nanti* or *casa de nanzi* (first room), and the other two, leaned against the end wall of the first room, with a common side, but not for this reason directly communicating. The corridor, *curreddura* or *carrettura*, is made out of one of the two smaller rooms to which is usually annexed the kitchen (Favia 1947; Simoncini 1960; Spano 1967; Colamonico 1970). The corridor, close to the inner division, is, on its upper part, bounded by a floorboard, called *ntaulatu*.

In the characteristic houses of Salento, and particularly in Taranto and Brindisi areas, it can be found a single room plan placed upon a basement, or a big room completely subdivided into four parts by vertical and horizontal separators: kitchen, alcove, little room and storehouse (Cazzato and Costantini 1996). The bigger houses consist, instead, of rooms placed one after the other. These corridor-houses consist of three rooms: a front and spacious one used as living room and other two with a common side, but not directly communicating. The upper spaces consist of two or three bedrooms, placed on the front line of the house or on the two rooms adjoining the corridor. An inside wall staircase allows the entrance to these rooms, while the staircase on the courtyard is used to

![Figure 1](Planimetry of the farm Carestia in Ostuni countryside)
go up to the terrace. The corridor-house of Salento’s area of Albania is enriched with the wine cellar, called *ciddharu*. It is noteworthy the wide diffusion of the use of the *curreduru* in Brindisi hinterland, in the Murge of Taranto, the first terraces of the continental upland and the median narrow of the peninsula. In Lecce’s tableland, the house *a curreduru* lacks the cellar and has only one storehouse whose entrance is on the corridor.

THE HOUSES WITH COURT

In Lecce area the kind of construction with the corridor-shaped entrance is replaced by other kinds of construction. The Lecce’s peninsular territory is made up of houses which do not directly overlook the lanes of the suburb since they are substituted by the court, in common to more than one house. A courtyard of various shape and size separates the houses from the lane, as it happens in many places of the Mediterranean area; it is important to remind the Iberian *mesetas*, the Sardinian *campidani*, the coastal plains and the steppes of the Balkan peninsula. The new element is the staircase leading to the covering upper porch, used to expose agricultural products to the sunlight. The terrace also overlooks the public way (Costantini 1979).

The rural house usually consists of one or two facilities, almost always at the ground floor, placed in a group of one room houses inside a courtyard of collective use. These houses are placed on straight fronts, converging at right angle, and they do not always take the four sides of the courtyard up. As a matter of fact, there are simple or right angles formations of houses, while, on long and narrow courtyards, two groups of houses side by side to the road are often placed.

It is necessary to pay attention also to the house settlement of the Salento’s area of Greece, made up of
eleven small towns: Soleto, Martano, Calimera, Zollino, Sterniatia, Castrignano dei Greci, Melpignano, Corigliano d’Otranto, Caprarica, Castri, Martignano. The soil is dry, the ground is Karst and the landscape is desolate. There are not wide expanses, the fields are bounded by walls made of stone, ashlars and bricks and built, stone by stone, without binder (Costantini 1988). In the middle of the settlement, a *trullo chipuro* is generally placed (Leccisi 1994); it is used to protect the colonist from the bad weather. The olive graves are dusty and rugose; it is possible to observe the tobacco growing.

These villages are what remains of the Greek colonies or of the Byzantine colonies or of the once dated back to Ottoman exiles. The nearly identity between the ancient Hellenic houses (their descriptions in the *Odyssey* are an example) and those of the Salento’s area of Greece is of no wonder. The architecture of the Greek house is simple: the courtyard, surrounded by porches, opens on the road or on an open space.

Under the porch there are premises for the stables, the mills, the lodgings for slaves and foreigners and in the centre, behind the vegetable garden, there is Zeus’ altar.

The Greek house of the Salento replaces Zeus’ altar with a well and a high whitewash wall with two folding doors separating the courtyard from the road. Among the most typical elements there is the staircase laid down on round or depressed arches and leading to the upper floor which is used for dwelling. The ground floor, or basement, becomes a cellar, a lumber-room, a woodshed, or it is the place where less well-off people dwell. The staircase leads even to a balcony, called *mignano*, which dominates the main door of the court, setting up a «zip» between public life (the road) and private life (the court).

BUILDING TECHNIQUES

The architecture of Salento uses poor materials and simple building techniques and this reveals a deep knowledge of the characteristics of the materials and of the constructive rules by skilled workers. In Salento’s small town centres, we can find master masons, able to build particular masonry vaults (vault with *spigoli*, vault with squarig and vault *gavetta*) or openings in the walls (Leccisi 1991, b) with a technique improved during the centuries, without the use of centreings but only using local materials such as the tuff, the *carparo* and the *leccisu*. The Lecce’s stone is, indeed, the basic element which influenced the whole architecture in Salento in such way that it is possible to affirm that the Lecce’s baroque owes its extraordinary flourishing to the abundance of this stone, easy to work and to carve (De Marco and Bolognini 1995). The bigger quarrying centres of this stone are in Lecce, Cursi and Melpignano. There are several studies on the three kinds of *leccisu* usually used (Stella and Marrone 1993). The types extracted from the working quarries of Cursi and Melpignano are less studied. We shall briefly list them: *mazzara* (3–4 m thick); *piromafo* (1,34 m); *cucuzzara* (1,90 m); *bianca* (0,50 m); *dura* (5,40 m); *dolce* (5,40 m); *saponara* (0,30); *gagginara* (0,60 m) (Arditi 1888, 1894; De Giorgi 1902). The whole works are at open sky, *a fossa*, and go to a depth of 30 meters, whence the name *tagghiata* to the place where the quarry is situated. The kinds of tuff,
generally quarried, are the white tuff and the yellow tuff. During the quarry we will go on removing the cappellaccio (friable and concretionary calcarenites), then it is prepared a quarry plane, deepened by going on extracting. The rock was dug out by using a pick with a long handle and with the double iron arms of different lengths, named zuecu. As every work, even the extractive one shows positive and negative consequences. It represents, indeed, an irreplaceable profit-bearing commitment for same sectors of the commerce and the industry in Apulia, but it deteriorates the environment. In Salento, an extractive activity on mountainous or hilly slopes, disfiguring the landscape, is not yet developed. This happens according to the morphology of the area, dominated by Karst plateaus. The intensive exploitation of the layers using the technique a fossa tends to transfer research areas, causing the problem of the excavation filling up and of the use of the debris. The quarries filled up with debris are precarious and unstable; the embankments built, at the present time, using debris are exposed to hidden dangers. Therefore we firmly hope that the extractive works will be carried out paying attention not only to the quality, to the availability of the materials and to the proper means for their rational use, but even putting into practise new standards looking after both economic interest and the public welfare.

TOOLS AND MASONs

It will be simple to understand that during ages in which the prefabricated element was unimaginable to use, the builder job, the frabbrecatore, was not an easy occupation because it required responsibilities and sacrifices. The mason living in that age had a wide tool-kit made by local forgers. A long picturesque list comes out by some ancient masons' memories: lu martiedde, la cucchiara (trowel for mortar), lu cucchiarine (to retouch), lu square (to shape stones and tuffs), lu square fauze (for the roughness after the setting), la marteddina (to reduce stones), la martedda grossa a ddiende (to rough-hew uncut stones), lu pecone (to work the stone for inside places), lu pecone a jasca (an axe-shaped pick to rough-hew), la mannera (to square the tuffs), la strufina (joinder to smooth stones, particularly those of the front), la strufina tonna (to hollow out cornices and capitals), lu rambotte (to level the freestones), and different saws used for stones and tuffs, named serracchja. Then, hoes, wedding hoes, shovels, poles, caldarine, wooden and iron barrows, must be added. Therefore, it was used the macelana, a monkey winch, substituted by modern skip hoist to rise mortar and lift it up. The proper stones and tuffs upright setting was checked by lu piombo; lines were drawn by using a thin line, lu lenze; to check the horizontal plane it was used lu levèdle; finally the mortar necessary to retouch plasters and walls was put on a sort of palette, lu sparvière. The most skilful masons were called mèste, i.e. masters, and the work managers were called chief masters, cucchiara: they were almost always the building planners. The contribution brought by stone-cutters to the buildings was of great value: to these artists we own the sculptures of the keystones of the internal and external capitals, and of the figures, the symbols, the coats of arms and every sort of embellishment.

CONSTRUCTION OF FOUNDATION, WALLS AND PILLARS

To lay the foundations, first of all it is necessary to remove the vegetable land to reach the stratum suitable to support the weight of the upper construction. Then the land is horizontally levelled by using the mattock and, after setting a stratum of mortar, murtieri, made up of lime and vegetable land, to level the setting surface, it is built the so-called linea di punta, on which the wall is erected. There are two kinds of walls: the first is a non-cavity wall usually built inside the constructions named wall of purpitagnu, 20-30 cm thick; the second is maximum 1,20 m in thickness and made up of two ashlar covers, squared only on three faces. 20-25 cm thick, the curescie, with an interspace filled with debris or with the bolo, a type of clay common in the zone. Sometimes particular ashlars, ligatore, were set in opera di punta at a distance equal to 1,50 m, to link the two covers. Particular care was paid to the building of angle-irons, choosing the best stones, without defects, named cantuni. In the residential buildings which, in Salento, usually have two floors outside the ground, the main walls is 23–25 cm thick and the maximum room size is about 5m. The linea di punta in foundation is 60 cm in breadth.
In the buildings constructed for oil mills, for the first tobacco manufacture, for large stalls, the size of the vaults, unload on pillars connected with side walls and intermediate pillars. In this case the outside walls are 50–60 cm thick and the intermediate pillars have a cross section whose four arms have a middle size equal to 60 cm × 60 cm. The *linea di punta*, on which the outer walls of the building and the pillars are erected, are about 70 cm wide. A three workers team, made up of one mason master, *cucchiara*, one squarer, *mannara*, and two hodmen, set in a working day 5–6 mc of ashlars, equal to 20–24 m² of walls.

Vaults

In previous researches (Colaianni 1967; Leccisi 1989; Leccisi 1991a), the building techniques of the stellar vaults and of the vaults with square, typical of this territory, have already been studied. Constructive peculiarities are pointed out in this session.

Vaults with spigoli

For the construction of the vault with *spigoli*, also named star-shaped vault, it is not used the wooden structure: it is necessary the use of the *furma*, a wooden centring about 10 cm thick, circular arch shaped or three focuses shaped or elevated, fulfilled using planks 2,5 cm thick and 20–25 cm wide. The team is composed of 3 or 4 workers at least: one *cucchiara*, one *mannara* and one or two hodmen. Once erected the outer walls according to the aforesaid way, we will proceed with the building of the four corbels, *mpise*, and of the adjoining walls. The ashlars of the corbels are part of the wall itself. After constructing the four *mpise* in the four corners of the room, usually costing of 4–5 lines of shaped stone, of which the last one named *summarieddu*, 20 cm thick, is very particular, we will go on erecting walls over the extrados of the next vault. The shape of the vault is drawn on each wall using a pencil; soon after it follows the phase known as *palumbredda*, i.e. the nick of the wall on the drawn line; this nick is 16 cm high and is variable from 0 to 5 cm in depth, starting from the top.

The *furma* is about 50–55 cm distant from the wall, so as the ashlars, which will form the groin 16 cm high, are put both in the *palumbredda* and on the *furma*. After completing the first arch, the *furma* is moved to build the adjoining arch. Then, after completing the second arch, it will be linked together with the first arch by properly shaped ashlars, named
vele and *rīga* 12 cm thick and with a maximum length equal to 110 cm. Over this measure, three ashlars are generally set. Therefore stones and scraps of different size, the *carica*, are placed on the arch; the biggest ones are placed at the ends, and the smallest ones are placed at the centre so to create a great contrast and a great compression among the ashlars. Near the *mpisa* particular ashlars, the *schiaffettoni*, pieces of *leccisu*, wedge-shaped with a 45° angle, are set in order to fill the gap between the wall and the vault extrados. The construction of the third and fourth arch is similar to the previous one. Therefore we will go back to the first arch placing the *furma* at 50 cm and finishing the different groins. The central section is closed using tuff ashlars and soon after it is loaded up with tuff pieces in order to roughly level the vault extrados surface. Subsequently a stratum of *tufina*, i.e. the tailings of the tuff stone manufacture, is spread to make out the slopes; the next phase is the proofing. A squarer needs two working days to give shape to the ashlar used for the covering of a 5 m × 5 m room, while a team made up of one mason master, one squarer and two hodmen needs only one working day to build the vault. The constructive phases of a star-shaped vault are shown in figure 7.

The length of the works depends on the patience and the accuracy of the squarer and of the mason master. To fix the price, the vault is generally valued about once and a half more than the room. The works are usually carried out in summer for two reason: firstly the mortar dries more quickly, secondly it is possible to avoid the undesirable burdening of the masonry constructions caused by the rain.

The vaults with square, a quadro aperto

The vault with square is the most representative construction in Salento’s art. There are two kinds of square: open and closed.
The vault with closed square, of which rare exempla exist, is supported by four brackets jutting out by the edge. The vault with open square is a mix among a cross vault, a basin-shaped vault and a keel-shaped vault, and it has, as horizontal projection, two triangles placed in the angular space of the room; the two contact lines between the vault and the pier, shape a right angle, i.e. with square. The vault has as horizontal projection a eight-points star, used to cover square or rectangular plan area with a proportion among the sides near at unity.

The constructive phase is more complex than that of the star-shaped vault, as the mpise of the star-shaped vault have one jutting cross edge, while the vault with open square has three edges: two jutting edges, in front of the ends of the square and one recessing, by the square vertex. The jut of the mpise from the walls is smaller than that of the star-shaped vault and reaches 40–50 cm, considering equal dimensions to be covered, yet with smaller section of angle piers, the vault has a greater rise and, as consequence, the room has greater volume compared with the star-shaped vault. The construction of the corbel, the mpisa, is shown in figure 9 where the ashlars are even numbered to better understand the constructing process.

The construction of the first of the four mpise starts by setting the ashlars —previously shaped by the squarer, marked with n°1 and called prima manu—which rest on the below wall for all their thickness, jutting about 2,5 cm. The prima manu ashlar is 25 cm high and the base of the front is usually 55 cm wide. The upper line of the prima manu juts 2,5 cm out more than the lower one. The ashlars made up of Lecce’s stone, marked in the figure with n° 2 and called cantune vacante, rest on the prima manu; they are about 25 cm wide and 25 cm high. The ashlar forming the cantune vacante, marked with 2', is set after ashlar 2 and properly shaped in a way as to fill the space left in the wall by the ashlar. The upper line of the cantune vacante 2 and 2' is 5 cm jutting compared to the lower one. The ashlar 3, called cantune vacante de tuzzatu, rest on the 2 one, always respecting its external perimeter, but it leaned against the ashlars C, called catene, previously built and following the walls. The 3' section can be extracted from the right-hand ashlar 3, while the 3'' section is properly shaped and placed at last. The upper line of these sections is 9 cm jutting compared to the lower one. The ashlars are always 25 cm high. The ashlar 4, called neconigliatu di quarta manu, is longer than the others, as, besides, following the external line of the ashlar 3, it is also fitted in the wall. The ashlar 4 is

Figure 8
Vault with open square, squadro aperto.

Figure 9
Constructive plan of the corbel, mpisa, of the vault squadro aperto.
tapered, so that its height is reduced to 11 cm and its line is 9 cm jutting compared to the lower one. After setting the ashlars 4 and 4', both properly shaped during the works, the *mpisà* is completed. Therefore, after completing this phase, the construction of the other corbels and of the whole structure can be started, according to a constructive technique similar to the one used for the star-shaped vault, always observing the following phases: the construction of the first two *furmate*; the construction of the squaring by setting the ashlars 5 and 6, called *mescu d'ascia*; the setting of the cap 7; the setting of the vele 5' and 6' and of the righe. The squarer needs two days to prepare the ashlars. A four workers team, composed of one *cucchiara*, one *mannara* and two hodmen, takes 3 or 4 working days to construct a vault of a room of a size equal to 5 m × 5 m.

Trough vaults and barrel vaults

It will be useful to examine the constructive techniques of the barrel vaults and of the trough vaults, locally called *gavetta* or *malrotta*.

The vault called *malrotta* is usually used for rectangular places and it consists of the crossing of two barrel vaults having the same radius of curvature. The constructive method is schematically the following. The wall is raised up to the line on which it should be placed the first ashlar, also called abutment of the vault. The abutments are built with ashlars made up of Lecce’s stone, about 25 cm high, while the vault is built with tuff ashlars about 16 cm thick. At least four more masonry lines were built on the abutments, reaching one meter in height. Besides the wood centring it is prepared the *furma*, which is arch-shaped, of a selected curvature, little different from the one used for the star-shaped vault, as it is built with two identical arches, 20 cm far one from the other and linked together by wood pieces, the *mascelle*, on which 16 cm × 25 cm squaring shaped ashlars are placed up to 106 cm, while the first settled ashlars rest on the line of *leccisu* and have only one abutment. As concerns vault construction, it is necessary to start from the room centre, placing the *furma* in the middle perpendicularly to the long sides. The staggered tuff rest symmetrically on the *furma*: they create 20 cm jutting teeth, closing an arch on which is soon put the *carica* (load) consisting of shapeless stones. The *furma* is disassembled and moved of about 70–80 cm, so that it can be started the construction of a new arch, according to the phases previously described, with the tuff ashlars fitting in the ones of the arch previously built. Therefore the *carica* is set and the *furma* is disassembled. This process is repeated until the distance between the most jutting point of the last arch and the shorter wall of the room is equal to the half of the rope of the *furma*. The *furma* is rotated of 90° and placed with an end laying on the centre of the room wall and with the other laying on the prop built in a way as its keystone can adhere to the intrados of the centre line of the masonry arch previously built. The construction of the pavilion head will start by building a half arch, made up of ashlars progressively decreasing in length, resting on the abutment and on the keystone arch previously built.

The angles are closed by properly shaped ashlars, which are placed side by side along the bisector plane, so to finish the pavilion head. In figure 11 the constructive phases are schematically shown.

The barrel vault, round or depressed, is used to cover rectangular-shaped places. It is often used to cover corridors, small toilets, access areas or small and narrow rooms. Also the barrel vault is built with tuff ashlars, about 16 cm thick, which rest on abutments made up of Lecce’s stones, 25 cm thick. The constructive process is similar to the one previously described but with some differences. The

![Figure 10](image-url)
Construction of sectroid in trough vault
The constructive phases of a trough vault.

furma consists of only one wood arch; the vault intrados outline is drawn on the ending walls of the room. This is the phase of palumbredda, i.e. the wall is nicked from 0 to 5 cm in depth and for 20 cm in height. The furma is placed at a distance of 70 cm, side by side to one of the smaller sides. The tuff ashlers are symmetrically put and they rest on the palumbredda and on the furma; they close the arch and, once it is finished, they load it with shapeless stones. The furma is moved forwards for about 70 cm and the phases, previously described, are repeated till the whole area is covered. The last cap ashlers are properly shaped.

THE STONE PAVEMENTS

The Lecce’s stone, main element of the aforesaid constructive techniques with its other kind quarried in the basins of Cursi and Melpignano is used for paving-stones, called chianche. Nowadays new building machineries able to produce simultaneously many paving-stones of the wanted thickness are used for the sawing, times ago carried out by hand. The traditional paving-stones were about 5 cm thick, 40 cm wide and maximum 70 cm long. The setting is very simple and it needs few rules to be observed. It is not advisable to set such a paving in presence of very low temperatures, because of the considerable degradation of the mortar used for the sealing of the joints. The paving-stones are set still dump in order to avoid the absorption of the water by the mortar and successfully setting. They are placed on a dry stratum of tuff dust, obtained in yard from the tailings of the squaring of the ashlers, and previously placed to measure the necessary inclines of the paving equal to 1%. After checking the solidity of the setting stratum and after removing any stones or impurities, the paving stone is placed, settata; then few light strokes, dealt by a non-metallic instrument, give the paving the right bond.

As concerns the sealing, the optimal distance among the dalles must be about 1,5 cm. The joints are sealed by filling their whole inner place with a fluid mortar consisting of water, sand and cement in which the water must have a sufficient quantity to give fluidity to the mixture and the sand and the cement must have a proportion variable from 2 to 1 and from 2,5 to 1. The mixture is poured in the joints by a flat instrument, one inch thick, called mannara.
di chiamenti. Then the joints are finished using a little trowel and the overflown quantity is removed using a spatula or a round tool with a diameter larger than the one of the joint. A good paving depends, above all, on the care paid during these phases. A team consisting of four workers, one cucchiara, one mason and two hodmen, can set 40 m² of chianche in a day.

STAIRS WITH MONOLITHIC STEPS

It is important to consider the peculiar construction of stairs with monolithic steps shaped with a particular technique.

The step setting is contemporaneous to the construction of the stairwell walls, so that the tuff ashlar, placed under and above the step, will be so high as to avoid the use of small ashlars, called the mbasature. As regards the flight stairs construction, it is necessary to put, at a distance of 1 m from the walls, a wood beam, called chianetta, sloping as the flight stairs and supported by props. One end of the steps, built with ashlars made up of Lecce’s stone of Cursi of a size of about 130 cm x 26 cm x 40 cm, and suitably shaped, rests on the chianetta, while the other end rests in the wall for a length equal to 25 cm. The joints of the steps are filled with the mortar and the working team is usually composed of one hodman, one cucchiara and one skilful marrana.

CONCLUSIONS

We have briefly tried to explain the main phases of the masonry constructive technique in Salento. It is an art rather than a technique, which, nowadays, still lives thanks to the requisites of lastingness and easiness of the constructions and to their low cost. This art gives a singleness to the territory. Besides the knowledge of these techniques gives the opportunity of making properly restoring works which will preserve the heritage of the old town centres in Salento.

REFERENCE LIST

Cazzato, Mario; Costantini, Antonio 1996. Grecia